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I. INTRODUCTION

In the present paper (I), we discuss the properties of a neutron
star at absolute zero temperature. In the following paper (II),l we
calculate, using the ideas discussed in I, the rates in a hot neutron
star of scme. of the most important neutrino-cooling reactions. We also
attempt to determine in II if the recently observed discrete x-ray sources
can be identified, as many authors have suggested, with hot neutron stars.

Our approach in the present paper is to discuss a neutron star as
if it were a huge nucleus, neglecting the thin outer shell from which the
photons are emitted. Some of the most important properties of a typical -

neutron-star nucleus are:

B~ -21 ’ (1a)
~ N , (1v)
~ 10%%7 , (1c)

and Q ~ 0 , (1a)
P 2 Ppucl (= 3.7 X 10+1h gn/cms) , (1le)
R = 10 km . (1£)

Here B, Iz ’ Nn , Q, and R are, respectively, the baryon number, z-component
of the isotopic spin, neutron’number, charge, mass density, and radius of
the neutron star. The above numbers obtain for a star of approximately

one solar mass, with R/R ~ 107

. In addition, a neutron star has a small
admixture of leptons (~ 1% by number of ¢ and u ). All hadrons and leptons
present in a neutron star are highly degenerate.

In Section II, we formulate in a generai way the problem of deter-

mining the ground state of a neutron star and discuss the conditions under
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which one might reasonably hope that an individual particle model (which
ve adopt) is valid. We also summarize the results obtained by other
authors using a non-interacting gat; model for the nucleons in a neutron
star. In Section III, we show how the strong interactions can affect the
equilibrium number densities and production thresholds of the various
hadrons. In Section IV, we calculate the effect of the strong interactions
on the energy spectrum (assuming no superconduct:lvity) of the neutrons and
protons in a neutron star. In Section V, we make crude estimates of the
contribution of hadrons other than nucleons to the equation of state and

'apecific heat.

II. THE GROUND STATE OF A NEUTI'RON STAR
A. General Statement and Remarks

The problem of determining the ground state of a neutron sta’r can
be stated in the following general fom:a Find the state that minimizes
the total energy for a given baryon number, mass density, and zero net
charge. This general statement is obviously insufficient, by itself, to
enable one to perform any practical calculations. All ca.’l.cu.’u;tions2‘6
to determine the properties of the ground state that have been carried out
50 far lean heavily on the concept of individual particles supposed to
exist inside the huge nucleus-like neutron star; |

One is led to use a particle model of a neutron star because most
of our laboratory knowledge of had_rons 1s expressed in terms of the
properties of independent particles, much of the experimental information
regarding strong mtémctims having been obtained by studying the inter-
actions of free hadrons. To regard a neutron star as composed of indivi~

dual particles is, of course, an oversimplification, but thils
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oversimplification possecsses cons;derable self~consistency and same
éxperimental Justification, Thé“éelf-consistency results from the action
of the exclusion principle and the experimental Justification can be found
in the successes of the independent-particle model in describing nuclei,

The ekclusion principle prohibits true scattering among the
degenerate baryons in a neutron star at zero degrees K because all the
energetically accessible states are occupied. A collision between two
baryons in a neutron star can therefore be pictured as follows. Initially,
when the separation is large compared to a Fermi, the two-particle wave
function is a product of plane waves, During the'collision, when the parti-
cles are close together, the product wave function is distorted because of
the strong interactions. Since all energetically accessible states are
occupied, the two-particle wave function must resume after the collision
its original form as a product of plane waves. Thus baryons in a neutron
star behave somewhat like conduction electrons in a metal, namely, they

X propagate like plane waves with some extra wiggles in the wave function
~when two particles are close together. The reason is the same in both
cases (electrons in a metal or baryons in a neutron star); the effective
strength of the forces (electromagnetic or strong) is greatiy decreased in
the medium of degenerate fermions by the exclusion principle.

The above picture is expected to be valid7 if the wave number, i,
which the average nuclear potential impresses upon a nucleon is smaller
than P?/h, where Pb is the Fermi momentum of the neutrons or protons.

The relevant criterion is therefore
E ~ (mnV'/'ba)l/2

< R/n . y (2)

where m is the mass of a neutron and V is the depth of the nuclear potential,
. =5



If one ighores for the moment a possible hard-core repulsion, then
inequality (2) is approximately equivalent to the condition that
?F > 170 MeV/c; this condition is always satisfied for neutrons in a
neutran star. The fact that inequality (2) is satisfied for neutrons is suffi-
cient for th.e validity of the model since (for p < 8 pnucl) most colli-
sions in a neutron star are between psira of neutrons or between a neutron
and some other hadron. .
We have suggested previously8 that a necessary condition for the
validity of any independent-particle model for hadrons is that the average

separation, d, between hadrons satisfy the following inequality:
@ > 0.5 F . (3)

’Ineqnality (3) 1s equivalent to the condition that p < 8 fp We now

ucl®
show in three different but related arguments why inequality (3) must be
satisfied for valid calculations }:o be carried out, with our present
knowledge of strong interactions, on the basis of an independent particle
model. The arguments given in subsections (1i) and (1ii) assume that the
effects of strong interactions can be important in a neutron star; this is

shown explicitly by means of examples in Section III.

{i) Hard Core

Our original argument8 assumed the existence of a hard core in, for
example, the nucleon-nucleon interaction. We again assume in this sub-
section a hard core. If inequality (3) 1s not satisfied, then pairs of
hadrons spend most of their time within each other's hard cores. Because
of the high-momentum components that are present in a hard-core interaction;
any pair of neighboring hadrons will continually produce other kinds of

virtual hadrons; thus the state vector of any particular particle will




¢ contain large admixtures of various hadrons. A "neutron” at such high
éensities will spend a large fraction of its time as, e.g., a
x +nn’'s +p or K +x + A°, Thus the concept of distinct strongly
interacting particles is not meaningful for densities greater than or of
the order of 'eight times nuclear densities.

This conclusion is easily understood in terms of the following

simple example., Imagine a collection of alpha particles at a density for
which d >R, vhere R o is the "radius" of an alpha particle. If the den-
sity of alpha particles is now increased so that d < Ra’ the alpha particles.
will come apart into their constituents, primarily neutrons and protons, &s
they do in actual nuclei., This simple example also suggests that rthe
distinction between fermions and bosons probably disappears for densities
in excess of eight times nuclear densities. Thus pions (bosons) will spend
a large fraction of their time as fermion anti-fermion pairs (e.g., N + N).
In this situation, one must regard the star as One gooey mess and try to

discuss the excitations of the star (or large nucleus) as a single entity.

(11) Strange Forces

The forces due to the exchange of strange particles are expected to
be important when d is of the order of h/ch, i.e., 0.4 F. Since these
forces are not well known at present, one cannot calculate reliably the

strong interactions among hadrons at densities for which 4 < 0.4 F,

{(1ii) Strange Particles

The mass splittings between members of the baryon octet are of the
order of a few hundred MeV. Thus strange particles such as L's, Ao'a, etc.,
will be produced in profusion in a neutron star when the neutron Fermi

energy is of the order of, say, 400 MeV. The condition that




B, (n)

2m
n

~  4OO MeV s (&)

implies an average separation between neutrons of the order of 0.k F. Since
the forces between various meubers of the baryon octet are not well known
(except perhéps for the nucléon-nucleon forces) , one can not carry out
reliable calculations for densities such that d < 0.4 F.

Note that Eq. (&) also shows that relativistic effects, which can not
be relisbly included in dynamical calculations involving the strong inter-
actions, are important for 4 < 0.4 F.g

B. The Non-Interacting Gas Model

The non-interacting gas model of a neutron star was proposed inde-
pendently; by Ambartsumyan and Saa.lcya.n2 and Salpeterh in 1360 and has been
investigated in great detail by Ca.xxxeron:5 and Tsuruta.s This model represents
the state of a neutron star in terms of the numbers of degenerate, but

- non-interacting hadrons and leptons that are present. Tsuruta has calculated

detailed tables, on the basis of the non-interacting gas model, for the

(o)

number densities of the various hadrons, z , A°, &, &, £°, etc., as &

function of stellar density for p < 300 P, A principal result of these

2-5
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calculations is that only fermions are present at densities for which

stable neutron-star models are expected to exist (p < 300 pnucl); no_pions
are present on the basis of the non-interacting gas model until
P 2 300 Phucl®

The following approxiﬁate nunerical results can easily be obtained,

for p<4 Ppuc? OB the basis of the non-interacting gas model:




n(n) = 2 x 10%° (p/pnucl) cm™ ; (5a)

3

n(e) = n(p) = 2 x 0+ (o/o,q)° cm” ; (sb)
Byln) ~ Egle) = 7% 10" (o/o, )3 mev (se)
B () ~ 3 (oo )3 Mev ; (54)
P(n) = 4 x 10*2 (p/ pnucl)l/ 3 Mev/e ; (Se)
Pele) = Bylp) = 7 x 0% (ofo,  )¥/% wev/e . ()

Here n(1), EF(i) , and PF(i) are, respectively, the number density,
Fermi kinetic energy, and Fermi momentum for particles of type i. Equa-
tions (5) will be used for order of magnitude estimates in this and the
succeeding paper.

The number of electrons and protons is much less than the number

of neutrons because of two facts: (1) The Fermi momentum of the electrons

~equals the Fermi momentum of the protons (the condition of zero charge);

and (2) The mass of an electron is much less than the mass of a nucleon,
The way in which these facts conspire to produce a relatively small number
of electrons and protons can be seen easily from the equilibrium relation

between neutrons, protons, and electrons, which is (n+p+ e en+n'+ ve):

¢ Byle) + }Fé(p)/amp ~ (m, -m)® + R2(n)/em, . (6)

Thus : (a(e)/n(n)) =~ (Py(e)/Py(n)® | (7a)
~ (Pg(n)/2m c)® (1)

<«< 1 ) ‘ (7¢)



vhich is the origin of the name "neutron star".
The non-interacting gas model has been used to cail.cula.t:e‘?'5 the

equation of state, heat capacity, and other properties of dense matter for

Pn

uel < p < 300 Poucls These results have been applied to a number of
problems inc.luding hydrodynamic models of supernova collapse .10 Many of
the papers in which these applica.tiox‘xs'e.re made discuss situa.tiont_s for
which d < 0.5 f; hence the crudest version of an independent-particle
model has been used in a domain in which no independent-pé.rticle model is
valid. The conclusions of these papers must be reexamined in order to

determine how much the conclusions depend upon unjustified inferences from

an independent-particle model.

III. PARTICLE MODELS WITH STRONG INTERACTIONS
A. General Formalism
The problem of determining the constituents of a neutron star can
- easily be formulated for any model that assumes the existence of individual

particles inside the star. One defines a function

0 = ;i: / dsgi [wi {NJ} +a (i) +p B'(i)] , (8)

where the sumation over the particle label i extends over all types of

rarticles that are present, ds_g is the number of particles of type i in

i
"a given momentum or energy interval, wi is the energy of a particle of
type 1 and momentum p, N 3 is the number density,of particles of type J,
Q(i) and B'(i) are the charge and baryon numbers of particles of type i,
and @ and P are lagrange multipliers introduced in order to satisfy the
constraints of conservation of charge and baryon number. The state of the

neutran star is then determined by requiring that



gg- -0 , (9)
1 1

where the minimization implied by Eq. {9) is carried out at constant

volume .
Note that Eqs. (8) and (9) can be used to determine the equilibrium

state of matter even If the matter {s not in the form of an electrically

neutral neutron star.

B. Examples
The function wi(NJ) has & simple form for the leptons (e ani ud)
that are present because the average electrostatic energy is small

(= 0.2 (D/QAucl)a/s MeV) compared to the Fermi emergies (see Eqs. (5)).

Therefore,
V(p) = c(m® ® 4 22 , (10a)
" and W () - c(muz e 4 pe)l/2 - (10b)
From Eqs. (8) - (10), one finds:
W (Pp(e)) =-a ’ (11a)
= VR, W (Ble)) 2m, . (11)

The functions W,, where i is a hadron, depend on the number densities of

i
all the hadrons present because of the strong Iinteractions that obtain

among all hadrons; the magnifuda;of these interactions are comparable with
the hadronic binding energies. A significant part of each hadronic func-

tion Wi will, nevertheless, be given by thg simple expression:




62+P2/ Zni. Thus one obtalns by differentiating Eq. (8) with respect

oy
to N :
n
m o + Eg(n) +B(n) = -8 - (12a)
Bere: ' )
Ba) = o [/ &%, (yome?-¥em)] (120)
n

represents the average energy due to the strong interactions between the
neutrons and all other hadrons present. The quantity B(n) 1is negative

and less than - EF(n) (8 - PFe(n)/E mn) 1f the neutrons are bound’
independent of the gravitational forces. As a first approximation, one can
neglect in computing B(n) all interactions except those among the many
neutrons present. In this simplified case, B(n) 1is the average energy due

to interactions of the neutrons in & neutron gas. Even in this case, the
quantity B(n) 1s uncertain by a factor of two or more depending upon

.which form is chosen for the nuclear forces in a nuclear-matter calculaticm.n

The equilibrium equation can be obtained by combining Eqs. (11) and

(12) with a similar relation for protons. One finds:

Wele) + Eg(p) = Ey(n) + (m, - m)c® + (B(a) - B(p)) (13)

where B(p) 1is defined by Eq. (12b) with n replaced by p. Note that

Eq. (13) reduces, if (B(n) - B(p)) is set equal to zero, to the relation
(Eq. (6)) valid in the non-interacting gas model. Preliminary estimates
suggest that (B(n) - B(p)) 1is, however, rather large because of the great

disparity between neutron and proton number densities.

-lo -




If £ 's are present,

o _c2 + EF(};-) = WF(e)+mnc2+ EF(n) +(B(n) - B(z7)) ’ (14)
z

and if x 's are present,
2 -
m c +B(n) = WF(e.) (15a)

5 @ s (1sv)

where we have defined a)“ to be the energy of the lowest pionic excitation.
In writing Eq. (15) , we have made use of the fact that pions are bosons
‘and hence all the pions that are present (at zero temperature) will be in ‘
the lowest energy state.

Equations (13), (14), anéd (15) can be obtained by inspection from
the equilibrium reactions, n + e + P=n+n+v, e  +n+n=3 + Vo T n',
and n +ne=x + D +n'. The reason why neutron stars can contain I 's,
Ao's, and possibly many other hadrons in abundance, although these strange
“particles are not Present to a good approximation in ordinary nuclei, is
that the Fermi kinetic energy, PFE/Zm, in neutron stars can be of the
order of the mass differences (300 MeV) between the hadrons (PF2/2m < 50 MeV

for ordinary nuclei).

C. Shifts in Threshold Densities

8 the threshold densities at which various

Strong interactions shift
hadrons are produced from the values these threshold densities have in the
non-interacting gas model. The crucial way in which these threshold shifts
occur is most clearly understood by discussing a few examples. Pions are

produced at densities such that (n +n -=x + p +1') ¢




W, (P%(e)) > o _ e+ B{x") . (16)

n

Sigmas are produced at densitles such that (e +n+n -1 + v, +n'):

*

He(Fple)) + Bplu) 2 (s _ - =) ¢ + (B (z) - B(n)) . (17)

Pions are produced before sigmas 1f:
B(x) £0.5 [(my - m - 2n) &+ (3,(2) - B(p) - B(B))] . (18)

Inequality (18) follows from Egs. (13), (16), and (17). It is useful to
rewrite Eq. (18), expressing all energies in MeV and estimatiﬁg the proton .
Fermi energy from the non-interacting gas model, One finds in this way
that the criterion for pions being produced before sigmas is (energies in
MeV):

B(x) £ - 10 - 1.k (o/p

nucl)l‘/s + 0,5 [Bo(z') - B(p):] . (18') N

The question of whether or not this inequality is satisfied has
great practical significance since the presence of a large number of pions
changes the predicted cooling rates of a hot neutron star by a large
factor (~ 1.0"'7).1"8 Note that inequality (18) or (18') can never be satis-

fied if one neglects, as one does with the non-interacting gas wmodel, the




effects of the strong interactions (i.e., sets B(x ) = Bo(z’) = B(p) = 0).
The reason that the threshold density for the production of pions is so

high (= 300 Pruc
the excess negative particles, electrons, are drained off into I 's before

1) on the basis of the non-interacting gas model is that

the Fermi energy of the electrons becowes high enough to make pions.

D. General Remarks About Models that Include Strong Interactions

The equations given in Section III A-C are valid for any model that
assumes the existence of individual particles in a neutron star. Of course,
these particles will have, as a result of their comtinuous stromng inter- ‘
actions, properties thaf. are different from their free-particle analogues
which are studied in most laboratory experiments. Unfortunately, one must
invoke a detailed theory of strong interactions in order to calculate gquan- 4
tities such as B(x ) and BO(Z-). We hope that some high-energy theorists
will apply their methods "to the calculation of these interaction energies

. which are vital to an understanding of neutron stars .12

IV, THE ENERGY SPECTRUM OF A NEUTRON STAR
A. General Discussion

The specific heat and neutrino luminosity of a neutron star depend
critically on the spectrum of energy states available to the star. In the
present work (papers I and II), we describe the states of the star in terms
of its constituent particles, adopting the model that Gomes, Walecka, and
Welsskopf used to describe nuclear ma.tter.7

We assume that the nucleons in a neutron star do not form a super-
fluid: that is, we assume that there is no energy gap between the ground

13

state and the first excited state of the nucleon gas. An energy gap of

-13 -



more than 0.1 MeV in the neutron energy spectrum would greatly reduce
both the neutrino luminosity and the specific heat of the star.

We are now trying to determine theoretically whether a dense nucleon
gas forms a superfluid and to estimate the effects of superfluidity omn the
cooling rates of hot neut;'on stars; we expect to report on this work at a

later date.

B. The Nucleon Effective Masses

({) Definitions

According to the individual-particle model, the expression for the

density of states avallable to a single nucleon is given by

o(E) = 27l 23 p2 dp/aE - (19)

vhere p(E) 1s the number of states per unit energy interval per unit
volume, and p and E are the momentum and energy of the nucleon. For a

non-relativistic nucleon, the free-particle model implies that

3

1287 m , (20)

P(E) = 2

where m is the mass of the nucleon. The effect of Interparticle inter-
actions on the energy spectrum of a star can be represented approximately

by writing the energy of each individual nucleon in the form

E(p) = ¢ ymtci+p® - mc? + U(p) ’ (21)

where U(p) 1is the change in the single-particle emergy produced by
interactions with neighboring nucleons. We define the effective mass

»*
n (p) by the relation

b=



1 1 1 deE}
= + = (22)
* 2 2 -2.1/2 a ’
m (p) (=2 + e 2 P
which leads to the expression
-1 -2 _ =3 »*
p=2"x 2n pum (p) (23)

.

for the density of single-particle states. Note that Eq. (22) reduces to
the usual' non-relativistic definition of an effective mass if p is

neglected relative to m in the first term on the right-hand side of Eq. (22).

-2

Tne additional relativistic correction (- % p2 o c-e) is small (~ 5%) for

nuclear matter. We are interested primarily in the density of states near
the Fermi momentum PF’
neutrino cooling rates. Thus we need calculate only mn*[P?(n)] and

because this is the quantity that enters into

* +*
mb*[PF(p)], which we can now write more compactly as m_ ~ and m respectively.

(ii) Calculation of the Effective Masses

We nced the effective masses of both the neutron and the proton for
_our calculations of cooling rates. There are, however, two important simpli-
fications that result from the fact that the number density of protons is
much smaller than the number dgnsity of neutrons; one can, with sufficient
accuracy, neglect the effect of neutron-proton interactions on the neutron
energy as well as the effect of proton-proton interactions on the proton
energy.

The nucleons are only slightly relativistic for the densities at
which an individual-particle treatment is valid, and the term p~t au/ap
in Eq. (22) is not large compared to mL. We thus treat both the relati-

25 c-2) and the interaction-correction as small

vistic correction (- %p m
perturbations and do not consider relativistic corrections to the interaction
term in Eq. (22). Following the non-......vistic treatment of Gomes et gl.,7

we make several simplifying assumptions:

“15=



(1) The potential acting in an odd-parity nucleon-nucleon state is negli-
éibly sall;

(2) The potential acting in even-parity states is spin-independent and
consists of a short-range hard-core potential, Vcore(r), and a long-range
attractive pétential, Vatt(r);

(3) The repulsive core makes a negligible contribution to dU/ap;

(%) The Born approximation provides an accurate estimate of the expectation
value of the attractive potential (because of the effect of the exclusion

principle on the nucleon wave functions).

Gomes gg,g;z have shown that the above approximations result in small errors
at densities near nuclear density.

The four assumptions listed above imply a simple correspondence
between nuclear matter and a neutron star with the same number density of
neutrons. In computing U(p) for a neutron in a neutron star, we include
interactions with only half the neutrons in the star, because assumption
A(l) and the exclusion principle imply that there 1s no interaction between
neutrons with parallel spin. The corresponding U(p) <for nuclear matter
(which contains equal numbers of neutrons and protons) includes contribu-
tions from half the neutrons and all the protons present. Thus we conclude

that

Wt (5 ) ~ 3 O (9 ) (24)

where superscripts "m.s." and "n.m." denote, respectively, "neutron star"
and 'nuclear matter", and the subscript "n" represents "neutron“., One can

use a simlilar argument to show that

U;‘B' (5 o) = % Ug'm' (p; o) ) (25)

-16-




The assumptions (1) - (4) can be used to show that the neutron and

proton energies have the form:

n.s. .s.
U

n

s

(p; o) = % (p; e,) : (26a)

- (am)? faa Ja¥r cos®(kx) VFEH(x) , (26v)

lql <Pp(n)

where k = (20)7F (p-g) (26¢c)

-

and PF(n) is the neutron Fermi momentum.

The effective masses of the neutron and proton have been calculated
using Eqs. (22) and (26). The computations have been carried out for the
following potentials: (1) an attractive square well with a repulsive core
{the potential used by Gomes et al.); and (2) several combinations of
attractive Yukawa potentials and repulsive cores (the potentials suggested
by Prestonlu). There is a significant variation in the values of the
.effective masses calculated using these potentials, in spite of the fact that all
the potentials were chosen to fit the low-energy nucleon-nucleon scattering
data. In the next two paragraphs, we describe the general behavior of the
effective masses as functions of density, indicating the extent to which
the numerical results depend on the particular potential chosen. The errors
introduced in our calculations of the specific heat and cooling rates by the
uncertainties in the effective masses are small compared to the other uncer-

tainties that exist,




"~ (4i1) Neutron Effective Mass

The neutron effective mass takes on its minimum value at a density of the

order of Prucl® For 0.5 < p/ Prucl < 5, the neutron effective mass

m:n.s. is in the range
*n.s‘
0.90 o <~mn < 1.15 m . (27)
Our present estimates for m*n.s. are somewhat higher than in our previous

n

work8 since we did not include the relativistic correction in our earlier

estimate, For p << Prucl? the effective mass can be expressed in the form

n

2n - mn.[l - a (p/pnucl) + 0.08 (p/pnucl)E/s] ’ (28)

vhere a = 2.5 + 0.5.

(iv) Proton Effective Mass

The proton effective mass reaches its minimum value m;m at a

‘ density Pnin? where

*
05m <m, <0.75m (29)
and 0.9 Prucl <Ppy, <2 Prucl . (30)

For p X pnucl » the effective mass can be expressed in the form

m;n‘s' ~ m [l -y (o/pnucl)] D (31)

where 7y = 5.0+1.,0 . ' (32)

m.s,

At high densities, mp is given approximately by

-18- '



. m*n.Bo P mn [1 - 6 (

X /o)t *] , (33)

pnucl

where 0.6 <8< 2,0 .

The effective masses can thus be calculated with reasonable accuracy,
despite the fact that our present ignorance of the strong interactions makes
the accurate calculation of the energy of a neutron gas difficult (or impos~-
sible). The energy Ufot of a neutron gas i1s the sum of a negative part
Uh, which results from the attractive well, and a positive part Ui, which
results from the repulsive core end the ordinary kinetic energy. The poai-
tive and negative contributions to U, . tend to cancel, and lUtotl is
generally small compared to either IUAI or IUfl. Thus, small errors in
Uh or UP can cause large fractional errors in Uiot‘ On the other hand,
the strong interactions cause only a.relatively small change in the effective

mass. Thus it is possible to calculate the effective masses to within about

10% despite the uncertainty in the treatment of the strong interactions.

C. Electrons and Muons
The energy spectra of the electrons and muons in a neutron star are
essentially the same as their corresponding free-particle spectra, because
the energies of the electramagnetic interactions are small (< 1 MeV)

compared to the relevant Fermi energles.

V. THE EQUATION CF STATE AND SPECIFIC HEAT
The strong interactions among the hadrons present in a neutron star
make it difficult to find an accurate equation of state for neutron-star
matter. The equations of state based on various theoretical estimatesls

of the energy of a neutron gas differ by as much as a factor of five at

~19=



typical neutron-star densities. The presence of hadrons other than the
;mcleons can be estimated, on the basis of the non-interacting gas model,
to change the pressure by less than a factor of two.

The specific heat also depends on the threshold densities for the
production of various species of strange particles. The specific heat
can be sﬁown to increase by a factor of' the order of 1.5 near the threshold
density for the production of each new baryon. The densities at which these
increases occur are somewhat uncertain (cf. Section III) because the strong
interactions can cause large shifts in the threshold densities of the
strange baryons. |

The presence of pions will not affect the specific heat directly.

A pion gas becomes degenerate at a temperature Tc’ where

T~ (X102 %) @ n )2 (oo, DY, @

and n x/nn is the ra.tio of the number density of pions to the number
"density of neutrons. Pions are therefore highly degenerate if n_ > 0.1 n,
and T < lOlo °K. The ratio of the pion specific heat Cﬂ t0 the nucleon

specific heat Cn is given by

X o 0.1 |-Z L . (35)
c_ T

Thus, Cx is negligible compared to Cn if T Tc'
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